In a vaccum i.e. , Maxwell’s Equations In SI and CGS system can be expressed as:

**SI**

(1)

**CGS**

(2)

Considering a Frequency dependency of these Fields ** **and** ,** i.e.** , **and** ,**

(3)

(4)

These equations possess non-zero solutions which implies EM Field can exist even in the absence of any charges.

We can now choose the potentials of the EM wave such that the scalar potential is 0 i.e. .

This can be satisfied by using the vector potential as a curl of the field . From **eq.(2)** : and consequently, .

On substitution in the divergence equation, .

Also, The choice of isn’t totally unique and it can expressed as a gradient of some function such that still holds. Using, these conditons we come to the * d’Alembert equation* or the

**:**

*wave equation*(5)

## 0 Comments